S6 REVISION FOR PURE MATHEMATICS

Allow me to discuss this dozen of questions with you.

1. The nth term of an arithmetic progression (A.P) is $\frac{3n-1}{6}$. Show that the sum of the first *n* terms of the progression is $\frac{n}{12}(3n+1)$.

Review

- nth term of an AP, $u_n = l = a + (n-1)d$
- sum of n terms of an AP, $s_n = \frac{n}{2}(2a + (n-1)d) = \frac{n}{2}(a+l)$
- nth term of a GP, $u_n = a r^{n-1}$
- sum of n terms of a GP, $s_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}$
- sum to infinity, $s_{\infty} = \frac{a}{1-r}$

For
$$u_n = \frac{3n-1}{6}$$
; First term, $u_1 = a = \frac{2}{6}$; second term, $u_2 = \frac{5}{6}$

So, common difference,
$$d = u_2 - u_1 = \frac{5}{6} - \frac{2}{6} = \frac{1}{2}$$

Here,
$$s_n = \frac{n}{2} \left[2 \times \frac{1}{3} + (n-1) \times \frac{1}{2} \right] = \frac{n}{12} (3n+1)$$

2. Given that $\log_2 3 = p$ and $\log_4 5 = q$, prove that $\log_{45} 2 = \frac{1}{2(p+q)}$.

Review of laws of logarithms;

- $\log_a b + \log_a c = \log_a bc$; $\log_a b \log_a c = \log_a \frac{b}{c}$
- $n \log_a b = \log_a b^n$; $\log_a b = \frac{\log_c b}{\log_c a} = \frac{1}{\log_b a}$
- $\bullet \quad a^{\log_a b} = b$

For this question,

$$RHS = \frac{1}{2(p+q)} = \frac{1}{2[\log_2 3 + \log_4 5]} = \frac{1}{2[\log_2 3 + \frac{\log_2 5}{\log_2 4}]} = \frac{1}{2\log_2 3 + \log_2 5}$$
$$= \frac{1}{\log_2 9 + \log_2 5} = \frac{1}{\log_2 45} = \log_{45} 2 = LHS$$

3. If
$$e^x = \tan 2y$$
, prove that $\frac{d^2y}{dx^2} = \frac{e^x - e^{3x}}{2(1 + e^{2x})^2}$.

Review: chain rule, $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$; $\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx}$

Quotient rule;
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

For $e^x = \tan 2y$, differentiating both sides

$$e^{x} = 2\sec^{2} 2y \frac{dy}{dx} = 2(1 + \tan^{2} 2y) \frac{dy}{dx} = 2(1 + e^{2x}) \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{e^x}{2(1+e^{2x})}; \frac{d^2y}{dx^2} = \frac{(1+e^{2x})e^x - e^x \cdot 2e^{2x}}{2(1+e^{2x})^2} = \frac{e^x - e^{3x}}{2(1+e^{2x})^2}.$$

4. The curve $y = ax^2 + b\mathbf{x} + c$ has a maximum point at (2, 18) and passes through the point (0, 10). Find the values of a, b and c.

For turning/stationary points, $\frac{dy}{dx} = 0$.

$$y = ax^2 + b\mathbf{x} + c$$

At
$$(0, 10)$$
, $10 = a(0) + b(0) + c$: $c = 10$

At
$$(2, 18)$$
, $18 = 4a + 2b + 10$; $2a + b = 4$ ···(i)

Now
$$\frac{dy}{dx} = 2ax + b$$

At
$$(2, 18)$$
, $\frac{dy}{dx} 4a + b = 0$ ···(ii)

Now (ii) – (i);
$$a = -2$$
; $b = 8$

5. Use the substitution $t = \tan x$ to show that $\int_0^{\frac{\pi}{4}} \frac{1}{1 + \sin 2x} dx = \frac{1}{2}.$

Recall, if
$$t = \tan x$$
, then $\sin 2x = \frac{2t}{1+t^2}$; $\cos 2x = \frac{1-t^2}{1+t^2}$; $\tan 2x = \frac{2t}{1-t^2}$.

For
$$t = \tan x$$
, $\frac{dt}{dx} = \sec^2 x = (1 + t^2) \Rightarrow dx = \frac{dt}{1 + t^2}$

Also change the limits i.e.

X	0	$\frac{\pi}{4}$
T	0	1

Now
$$\int_0^{\frac{\pi}{4}} \frac{dx}{1 + \sin 2x} = \int_0^1 \frac{1}{1 + \frac{2t}{1 + t^2}} \cdot \frac{dt}{1 + t^2} = \int_0^1 \frac{dt}{(1 + t)^2}$$

$$= \left[\frac{-1}{1+t}\right]_0^1 = -\frac{1}{2} - -1 = \frac{1}{2}$$

6. Find the coefficient of x^{17} in the expansion of $\left(x^3 + \frac{1}{x^4}\right)^{15}$.

Review: Expansion, $(a+b)^n = a^n + {}^nC_1.a^{n-1}b + {}^nC_2.a^{n-2}b^2 + ... + b^n$

The expansion for a general term;

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

For the $(r+1)^{th}$ term, $U_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$; r = 0,1,2,...

Now for
$$\left(x^3 + \frac{1}{x^4}\right)^{15}$$
; $n = 15$, $a = x^3$, $b = \frac{1}{x^4}$

$$U_{r+1} = {}^{15}C_r.(x^3)^{15-r}.(x^{-4})^r = {}^{15}C_r.x^{45-7r}$$

For the term in x^{17} ; $17 = 45 - 7r \Rightarrow r = 4$

Therefore the coefficient required is ${}^{15}C_4 = \frac{15!}{(15-4)!4!} = 1365$

7. Given that $y = \ln(1 + \sin x)$, deduce that $\frac{d^2y}{dx^2} + e^{-y} = 0$.

First apply the laws of logarithms and then the chain rule.

$$y = \ln(1 + \sin x) \implies e^y = 1 + \sin x$$

$$e^{y} \frac{dy}{dx} = \cos x$$
; $e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \left(\frac{dy}{dx}\right)^{2} = -\sin x$

Eliminating $\sin x$ and $\frac{dy}{dx}$, $e^y \frac{d^2y}{dx^2} + e^y \left(\frac{\cos x}{e^y}\right)^2 = -\left(e^y - 1\right)$

$$e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \left(\frac{1-\sin^{2}x}{e^{2y}} \right) = -\left(e^{y} - 1 \right)$$

$$e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \left(\frac{1 - (e^{y} - 1)^{2}}{e^{2y}} \right) + (e^{y} - 1) = 0$$

$$e^{2y} \frac{d^2y}{dx^2} - e^{2y} + 2e^y + e^{2y} - e^y = 0$$

$$e^{2y} \frac{d^2 y}{dx^2} + e^y = 0 \implies \frac{d^2 y}{dx^2} + e^{-y} = 0$$

8. Given that $\mathbf{a} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$, find the values of t such that $t\mathbf{a} + \mathbf{b}$ and $t\mathbf{b} + \mathbf{c}$ are perpendicular.

$$t \mathbf{a} + \mathbf{b} = t \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3t + 1 \\ 1 \end{pmatrix}; \quad t \mathbf{b} + \mathbf{c} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ -3 \end{pmatrix} = \begin{pmatrix} t - 1 \\ t - 3 \end{pmatrix}$$

For perpendicular vectors $t\mathbf{a} + \mathbf{b}$ and $t\mathbf{b} + \mathbf{c}$, $(t\mathbf{a} + \mathbf{b}) \cdot (t\mathbf{b} + \mathbf{c}) = 0$

So,
$$\binom{3t+1}{1} \cdot \binom{t-1}{t-3} = 0 \implies (3t+1)(t-1) + 1(t-3) = 0$$

$$3t^{2} - t - 4 = 0$$
; $(3t - 4)(t + 1) = 0$
 $t = \frac{4}{3}$, $t = -1$

9. Show that the vectors $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ are coplanar.

Review, if vectors **a**, **b** and **c** are coplanar, then **a**.(**b**×**c**) = 0 or **b**.(**a**×**c**) = 0 or **c**.(**a**×**b**) = 0.

$$\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ -3 \\ -15 \end{pmatrix}$$

Now
$$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{bmatrix} 3 \\ 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ -1 \\ 2 \end{bmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ -3 \\ -15 \end{pmatrix} = 9 + 6 + -15 = 0$$

Since
$$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
. $\begin{bmatrix} 3 \\ 4 \\ 1 \end{pmatrix} \times \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} = 0$, the vectors are coplanar.

10. Find $\int \frac{dx}{x + \sqrt{x}}$.

Let
$$u = \sqrt{x}$$
; $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \Rightarrow dx = 2u du$

$$\int \frac{dx}{x + \sqrt{x}} = \int \frac{2u \, du}{u^2 + u} = \int \frac{2}{u + 1} \, du = 2\ln(u + 1) + C = 2\ln(1 + \sqrt{x}) + C$$

11. Solve the equation
$$\sqrt{\frac{x-1}{2x}} - 3\sqrt{\frac{2x}{x-1}} = 2$$
.

For
$$\sqrt{\frac{x-1}{2x}} - 3\sqrt{\frac{2x}{x-1}} = 2$$
, let $a = \frac{x-1}{2x}$: "Here notice a reciprocal"

$$\Rightarrow \sqrt{a} - \frac{3}{\sqrt{a}} = 2 \; ; \; \left(\sqrt{a}\right)^2 - 2\sqrt{a} - 3 = 0 \; .$$

$$(\sqrt{a}-3)(\sqrt{a}+1)=0$$
; $a=9$ or $a=1$

When
$$a = 9$$
, $\frac{x-1}{2x} = 9$; $x = -\frac{1}{17}$

When
$$a = 1$$
, $\frac{x-1}{2x} = 1$; $x = -1$

Remember to test for such an equation with surds.

For
$$x = -\frac{1}{17}$$
, $LHS = \sqrt{9} - \frac{3}{\sqrt{9}} = 3 - 1 = 1 = RHS$

For
$$x = -1$$
, $LHS = \sqrt{1} - 3\sqrt{1} = -2 \neq RHS$

$$\therefore x = -\frac{1}{17}$$

12. The points A(4,0), B(0,3) and P(x,y) are such that PA and PB are always perpendicular. Show that the locus of P is a circle. Hence find the centre and radius of the circle.

Grad PA =
$$\frac{y-0}{x-4} = \frac{y}{x-4}$$
; Grad PB = $\frac{y-3}{x-0} = \frac{y-3}{x}$

Review: If two lines with gradients m_1 and m_2 are perpendicular, then $m_1 \times m_2 = -1$

For this case,
$$\left(\frac{y}{x-4}\right) \cdot \left(\frac{y-3}{x}\right) = -1$$

$$y(y-3) = -x(x-4) \Rightarrow x^2 + y^2 - 4x - 3y = 0$$
 of the form $x^2 + y^2 + 2gx + 2fy + c = 0$, hence a circle.

By comparison;
$$2g = -4$$
, $g = -2$; $2f = -3$, $f = -\frac{3}{2}$ and $c = 0$

Centre is
$$\left(-g, -f\right) = \left(2, \frac{3}{2}\right)$$

Radius,
$$r = \sqrt{g^2 + f^2 - c} = \sqrt{(-2)^2 + (-\frac{3}{2})^2 - 0} = 2.5 \text{ units}$$

NOTE:

- (i) You are required to continue doing practice wherever you are. The pandemic will soon come to pass.
- (ii) Do practice all the content you were given right from s5.
- (iii) Such series of discussions will continue, God willing.
- (iv) I wish you God's blessings in everything you do.
- (v) Stay home, maintain social distance and revise. Thank you.