SPECIAL PRACTICE PAPER FOR PURE MATHEMATICS SECTION A: (40 MARKS)

Answer all questions in this Section.

1. Given that α and β are the roots of the equation $5 x^{2}-3 x+2=0$, find the equation whose roots are $\frac{2}{\alpha-2}$ and $\frac{2}{\beta-2}$.
(05 marks)
2. Find the coordinates of the point of intersection of the lines with vector equations $\mathbf{r}=5 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}+\gamma(-3 \mathbf{i}+\mathbf{j}-\mathbf{k})$ and $\mathbf{r}=-2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}+t(4 \mathbf{i}-\mathbf{j}+2 \mathbf{k})$.
(05 marks)
3. Solve the equation $2 \sin \theta=\sqrt{3} \tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(05 marks)
4. Differentiate the following with respect to x
(i) $e^{\tan ^{2} x}$
(ii) $\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}}$.
(05 marks)
5. Determine the distance between the points of intersection of the curve $5 x^{2}+6 x y-8 y^{2}=0$ and the line $3 x-y=7$. (05 marks)
6. Find the volume of the solid generated when the area bounded between the curve $y=x \sin x$, the x - axis from $x=0$ to $x=\frac{\pi}{4}$ is rotated through one complete revolution about the $\mathrm{x}-$ axis.
(05 marks)
7. Solve the equation $2 \times 3^{2 x+3}-7 \times 3^{x+1}-68=0$.
(05 marks)
8. A curve is defined parametrically by $x=3 t^{3}, y=t-\frac{1}{t^{2}}$. Find the equation of the normal to the curve at the point $(-3,-2)$.
(05 marks)

SECTION B: (60 MARKS)

Answer any five questions from this section
9. Use De Moivre's theorem to simplify
(i) $\frac{\cos \theta+i \sin \theta}{i+\sin 4 \theta-i \cos 4 \theta}$.
(ii) $\sqrt{\frac{i}{3-4 i}}$.
(05 marks)
(07 marks)
Turn Over
10. (a) Show that $\sin (A+B) \sin (A-B)=\sin ^{2} A-\sin ^{2} B$.
(04 marks)
(b) (i) Express $8 \sin x-6 \cos x$ in the form $R \sin (x-\alpha)$, where α is an acute angle.
(04 marks)
(ii) Hence find the greatest and least values of

$$
\frac{1}{8 \sin x-6 \cos x-7} .
$$

(04 marks)
11. (a) It can be proved by induction that

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

Show that $\sum_{r=1}^{n}(r+1)^{3}=\frac{1}{4} n(n+3)\left(n^{2}+3 n+4\right)$.
(06 marks)
(b) A man invests $£ 2,000$ at the beginning of each year and receives compound interest at 5% per annum. By forming a series, show that the total amount of accumulated capital and interest at the end of n years is $£ 42000\left(1.05^{n}-1\right)$. Determine also the least number of years that the man would need to continue his investments in order to accumulate not less than $£ 100,000$.
12. P is the point $\left(a p^{2}, 2 a p\right)$ and Q is the point $\left(a q^{2}, 2 a q\right)$ on the parabola $y^{2}=4 a x$. The tangents at P and Q intersect at R .
(a) Find
(i) the equation of the chord joining the points P and Q and hence, deduce the equation of the tangents at P and Q ,
(ii) the co-ordinates of R.
(07 marks)
(b) Obtain the perpendicular distance of the point R from the straight line PQ and deduce that the area of the triangle PQR is $\frac{1}{2} a^{2}(p-q)^{3}$.
(05 marks)
13. (a) Using calculus of small changes, find $\sqrt{34}$ correct to two decimal places.
(05 marks)
(b) By Maclaurin's theorem, expand $\ln \left(\frac{2}{\sqrt{1-4 x}}\right)$ as far as the term Turn Over in x^{3}.
(07 marks)
14. (a) Integrate $\frac{x}{\sqrt{x^{2}-4}}$ with respect to x.
(03 marks)
(b) Find $\int \frac{d t}{1-\cos 4 t}$.
(04 marks)
(c) Using the substitution $x=2 \cos \theta$, deduce that

$$
\int_{1}^{2} \frac{1}{x^{2} \sqrt{4-x^{2}}} \mathrm{dx}=\frac{\sqrt{3}}{4} .
$$

(05 marks)
15. (a) Find the Cartesian equation of the plane containing the points $A(0,3,-4), \mathrm{B}(7,4,-1)$ and $\mathrm{C}(2,-1,2)$.
(06 marks)
(b) If T is the foot of the perpendicular from $(5,-9,7)$ to the plane in (a), determine the coordinates of T .
(06 marks)
16. (a) Solve the differential equation $y^{2} \cos ^{2} \mathrm{x}=\tan \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}$ (05 marks)
(b) An epidemic is spreading through a community at a rate which is proportional to the product of the number of people who have contracted it and that of those who have not contracted it. Given that x is the proportion of people who have contracted the epidemic at time, t ,
(i) Form a differential equation relating, x, t and a constant k.
(ii) Show that, if initially a proportion P_{0} of the people had

$$
\text { contracted the epidemic, them } x=\frac{P_{0}}{P_{0}+\left(1-P_{0}\right) e^{-k t}} .
$$

(07 marks)

END

