MATHEMATICS P425/2 TEST FOR MARCH TIME: 1 HOUR

Answer all the questions.

1. A random variable X is such that $\mathrm{X} \sim N(56,289)$. Find $P(42.5<X \leq 73)$.
2. A continuous random variable X has a probability distribution function given by

$$
f(x)=\left\{\begin{array}{c}
k x\left(9-x^{2}\right), 0<x<3 \\
0 \quad \text { elsewhere }
\end{array}\right.
$$

Find the: (i) value of the constant k (ii) mode.
3. A particle initially at a point with position vector $12 \mathbf{i}+28 \mathbf{j}-15 \mathbf{k} m$ moves with a constant speed of $6 \mathrm{~ms}^{-1}$ in a direction $2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$. Find its distance from the origin after 4 seconds.
4. Use the trapezium rule with six ordinates to estimate $\int_{0}^{\pi} e^{-\sin x} d x$ correct to three decimal places.
5. A body moves along a curve so that at a time t, it is at a point $\left(t^{2}+2, t^{3}-6,6-4 t\right)$. If the force acting on the body is $\mathbf{F}=4 t \mathbf{i}+2 t^{2} \mathbf{j}-4 t^{2} \mathbf{k} N$. Find the power developed by the force when $t=2 s$.
6. Derive the simplest formula based on Newton Raphson's method for solving the equation $\ln x+x-2=0$. Hence taking the initial estimate, $x_{0}=1.5$, use the formula twice to solve the equation correct to three decimal places.
7. The probability that a patient recovers from a rare sickness is $\frac{3}{8}$. Given that 24 patients are diagnosed, find the;
(i) standard deviation
(ii) probability of the most likely number of patients who recover.
8. Show that the equation $x^{3}-2=x$ has a root between 1.5 and 2 . Use linear interpolation to find a better estimate to the root, correct to two decimal places.

