

DEPARTMENT OF MATHEMATICS S.6 PURE MATHEMATICS-2020 PAPER 1 COVD-19 WEEK 2 3 HOURS

- Answer all the eight questions in section A and any five from section B.
- Any additional question(s) answered will **not** be marked.
- Each number has been motivated with some hints.

SECTION A: (40 MARKS)

- 1. Solve the equation $16 \log_x 2 + \log_2 x = 10$. (05 marks) Hint: Use change of base.
- 2. Prove that $\tan(x + 45^0) + \tan(x 45^0) = 2 \tan 2x$. (05 marks) **Hint:** Preferably go via the L.H.S. Use compound and double angle formulaes for tan.
- 3. Given that $x^4 + bx + c$ is divisible by $(x 2)^2$, find the values of b and c. (05 marks)

Hint: Recall that for repeated factors f(x) = 0 and f'(x) = 0.

- 4. Show that $\int_0^{\overline{4}} x \sin 5x \sin 3x \, dx = \frac{\pi 2}{16}$. (05 marks) **Hint:** Apply c - c = -2ss(factor formula for cos) then switch to integration by parts.
- 5. Find l, the line of intersection of the two planes 3x + 2y 3z = -18 and x 2y + z = 12. (05 marks) Hint: There are several methods you can employ. Use any convinient.

- 6. An error of 0.25% was made in measuring the radius of a sphere. Calculate the corresponding percentage increase in its surface area. (05 marks)
 Hint: An application of small incerements. See Backhouse 1.
- 7. Find the equation of a parabola having focus at (0, -4) and vertex (0, 2). (05 marks)

Hint: Recall that the distance from vertex to focus is equal to the distance from vertex to the directrix and apply distance formulaes.

from vertex to the differential equation $(x^2 - y^2)\frac{dy}{dx} = xy$ 8. Find the particular solution of the differential equation $(x^2 - y^2)\frac{dy}{dx} = xy$ given that y = 2 when x = 4. **Hint:** Use the substitution y = ux(Homogeneous o.d.e).

SECTION B: (60 MARKS)

- 9. Investigate the stationary values of $\frac{x^3}{1+x^2}$ and sketch the graph of $y = \frac{x^3}{1+x^2}$. (12 marks) **Hint:** Use the *TIAT* procedure for curve sketching. Remember *T* =Turning points and their nature, *I* =Intercepts, *A* =Assymptotes and *T* =Table of critical values. Also recall the features of curves with slant/oblique assymptotes.
- 10. Show that the line y = mx + c touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if $c^2 = a^2m^2 + b^2$. Hence, find the equations of the tangents to the ellipse $4x^2 + 9y^2 = 1$ which are perpendicular to the line y = 2x + 3. (12 marks) **Hint:** Use the discriminant $B^2 4AC$ and the condition for tangency. Recall that for perpendicular lines $m_1 \times m_2 = -1$.
- 11. (a) Investigate the stationary points on the curve $y = x^2 e^{-x}$. **Hint:** Use condition for stationary points and the fact that e^x is never $\operatorname{zero}(e^x \neq 0)$. Then use the table or second derivative method to distinguish the stationary points.
 - (b) Find the area bounded by the curves $y = 15 3x^2$ and y 3 = 0. What is the volume of the solid of revolution formed when this area is rotated through 360⁰ about the *x*-axis. (12 marks) **Hint:** Determine upper and lower limits for your definite integral and recall the fact that rotaion is about the axis.

12. The diagram shows an arrow embedded in a target. The line of the arrow passes through the point A(2,3,5) and has direction vector $3\mathbf{i} - \mathbf{j} - 2\mathbf{k}$. The arrow intersects the target at the point B. The plane of the target has equation x + 2y - 3z = 4. The units are metres.

- (a) Write down the vector equation of the line of the arrow in the form $\mathbf{r} = \mathbf{p} + \lambda \mathbf{q}$. Hint: \mathbf{p} and \mathbf{q} is given in the question.
- (b) Find the value of λ which corresponds to B. Hence write down the co-ordinates of B.
 Hint: Substitute the line in the plane via parametric equations of the line then solve for λ.
- (c) The point C is where the line of the arrow meets the ground, which is the plane z = 0. Find the co-ordinates of C. (12 marks) **Hint:** Use method in 12(b).
- 13. Integrate the following functions
 - (a) x³e^{-x²}. (05 marks)
 Hint: Use coexistence of a function and its derivative and then apply integration by parts.
 - (b) $\frac{x}{(4-x)^2}$. (07 marks) **Hint:** Use partial fraction.

- 14. (a) In how many ways can letters of the word DETERMINATION be arraned if the vowels must not be together and the constonants must not be together. (06 marks)
 Hint: Use the complement.
 - (b) Determine the number of odd numbers greater than 700,000 that can be formed using the digits 5, 6, 7, 8, 9 and 0 if no repeatitions are allowed. (06 marks)

Hint: Use table method and the condition for odd numbers.

15. (a) Express $4\sin\theta - 3\cos\theta$ in the form $R\sin(\theta - \alpha)$ where α is an acute angle. Hence solve $4\sin\theta - 3\cos\theta = 3$. (05 marks) **Hint:** Use compound angle formula for sin and compare coefficients.

(b) Find the greatest and least value of $\frac{1}{4\sin\theta - 3\cos\theta + 6}$ stating the values of θ between 0 and 360^{0} at which the occur. (07 marks) **Hint:** Use maximization and minimization of rational functions.

- 16. (a) Find positive integers a and b for which $x^4 + 2x^2 + 9 = (x^2 + a)^2 b^2 x^2$ and hence find the quadratic factors of $x^4 + 2x^2 + 9$. **Hint:** Use laws of indices and Shreedharacharya's rule.
 - (b) Solve the simultaneous equations $x = \frac{x+y}{3} = \frac{x-y+z}{2}, x^2 + y^2 + z^2 + x + 2y + 4z - 6 = 0.$ (12 marks) **Hint:** Apply method of intersection of line and 'plane'.

-END-