OUR LADY OF AFRICA S.S NAMILYANGO (OLAN)

A LEVEL PURE MATHEMATICS P425/1 SEMINAR QUESTIONS 2019

ALGEBRA

- 1. (a) The remainder when the expression $x^3 2x^2 + ax + b$ is divided by x 2 is five times the remainder when the same expression is divided by x 1, and 12 less than the remainder when the same expression is divided by x 3. Find the values of *a* and *b*
 - (b) Prove by induction that $8^n 7n + 6$ is divisible by 7 for all $n \ge 1$.
- 2. (a) Solve for x: $\frac{(1-x)^2}{2-x^2} = \frac{(1-a)^2}{2-a^2}$
 - (b) Solve the equation: $\log_{10} e.In(x^2 + 1) 2\log_{10} e.Inx = \log_{10} 5$
 - (c) Given that the first three terms in the expansion in ascending powers of x of $(1 + x + x^2)^n$ are the same as the first three terms in the expansion of $(\frac{1+ax}{1-3ax})^3$, find the value of a and n
 - (d) Find the term independent of x in the binomial expansion of $(3x \frac{2}{x^2})^9$
- 3. (a) Find x if $\log_5 2$, $\log_5(2^x 3)$, $\log_5(\frac{17}{2} + 2^{x-1})$ form an A.P.

(b) The first, second, third and *n* th terms of a series are 4, -3, -16 and $(an^2 + bn + c)$ respectively. Find a,b,c and the sum of *n* terms of the series.

- (c) The coefficients of the 5th, 6th and 7th terms in the expansion of $(1 + x)^n$ are in an A.P. Find *n*.
- 4. (a) Show that z + 2i is a factor of z⁴ + 2z³ + 7z² + 8z + 12, hence solve the equation z⁴ + 2z³ + 7z² + 8z + 12 = 0.
 (b) Show the locus of arg (z i) = 3π/4 on the Argand diagram and hence or otherwise find the Cartesian equation of the locus.

(c) If x, y a and b are real numbers and if $x + iy = \frac{a}{b + \cos \theta + i \sin \theta}$, show that $(b^2 - 1)(x^2 + y^2) + a^2 = 2abx$

5. A curve is given by $y = \frac{2(x-2)(x+2)}{2x-5}$

(i) Determine the turning points on the curve and hence find the range of values of y for which the curve is undefined.

- ii) Determine the asymptotes to the curve.
- iii) Sketch the curve.

Compiled by MUGERWA FRED 0778081136/0700863565

ANALYSIS

6. (a) A curve is given parametrically by x = 2cosθ + cos2θ, y = 2sinθ − sin2θ.
Show that the gradient at the point parameter θ is − tan ½θ and that the equation of the tangent to the curve at this point is xsin½θ + ycos½θ = sin 32θ.

(b) If
$$x^2 + 2xy + 3y^2 = 1$$
 prove that $(x + 3y)^3 \frac{d^2y}{dx^2} + 2 = 0$

- 7. (a) Show that the particular solution to the equation $x y\frac{dy}{dx} = y^2\frac{dy}{dx} + xy$, for y(0) = 2, is $x^2 + (y-2)(y+6) + 4In(y-1) = 0$.
- (b) According to Newton's law of cooling, the rate of cooling of a body in air is proportional to the difference between the temperature of the body and that of air. If the air temperature is kept at $25^{\circ}C$ and the body cools from $95^{\circ}C$ to $60^{\circ}C$ in 25 minutes, in what further time will the body cool to $32^{\circ}C$?

8. (a) Prove that
$$\int_{1}^{3} \left(\frac{3-x}{x-1}\right)^{\frac{1}{2}} dx = \pi \text{ (hint: Use the substitution } x = 3\sin^{2}\theta + \cos^{2}\theta$$

(b) Evaluate: i)
$$\int_{0}^{1} \frac{6x}{x^{3}+8} dx \quad \text{ii} \int_{0}^{3} x \log_{e}(1+x) dx \quad \text{(iii) } \int_{0}^{\frac{a}{2}} x^{2} \sqrt{a^{2}-x^{2}} dx$$

(iv)
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2+\cos x} \quad \text{(v) } \int_{0}^{1} \frac{x^{2}}{\sqrt{4-x^{2}}} dx \quad \text{(vi) } \int_{0}^{1} \frac{e^{x}}{(1+e^{x})} dx, \text{ use } t = e^{x}$$

(vii)
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{5\cos x+4} dx, \text{ use } t = \tan \frac{x}{2} \quad \text{(viii) } \int_{1}^{2} \frac{dx}{\sqrt{12+8x-4x^{2}}}$$

9. (a) Solve the differential equation $\frac{dy}{dx} = \frac{\sin^2 x}{y^2}$, if y = 1 when $x = \pi$.

(b) A machine depreciates at a rate proportional to its current value. Initially the machine is valued at Shs. 2.5 million, 5 years later it was valued at shs. 1.875 millions. If θ is the value of the machine after t years, form a differential equation and solve it to find;

- (i.) the value of the machine after 15 years
- (ii.) the number of years it will take the machine to be valued shs. 0.5 million.
- 10. (a) Prove that the function $y = \frac{sinxcosx}{1+2sinx+2cosx}$ has turning points in the range $0 \le \theta \le 2\pi$ and then distinguish between them

(b) Show that the tangents at the origin and at the point $(\frac{\pi}{2}, 0)$ meet at a point whose abscissa is $\frac{\pi}{4}$

TRIGONOMETRY

11. (a) Prove that: i)
$$\tan^{-1}\frac{\sqrt{3}}{2} + \tan^{-1}\frac{\sqrt{3}}{5} = \frac{\pi}{3}$$
 (ii) $\tan^{-1}\frac{1}{2} - \cos ec^{-1}\frac{\sqrt{5}}{2} = \cos^{-1}\frac{4}{5}$

Compiled by MUGERWA FRED 0778081136/0700863565

(b) Solve the following equations,

(i)
$$\tan^{-1}\left(\frac{x-5}{x-1}\right) + \tan^{-1}\left(\frac{x-4}{x-3}\right) = \frac{\pi}{4}$$
 (ii) $\sin^{-1}\left(\frac{x}{x-1}\right) + 2\tan^{-1}\left(\frac{1}{x+1}\right) = \frac{\pi}{2}$

12. (a) Show that $3\cos\theta + 2\sin\theta$ may be written in the form $\sqrt{13}\cos(\theta - \alpha)$ where $\tan\alpha = \frac{2}{3}$ hence find the maximum and minimum values of the function giving corresponding values of θ .

(b) Prove that if $\tan x = k \tan(A - x)$, then $\sin(2x - A) = \frac{k - 1}{k + 1} \sin A$. Find all the angles for $0^\circ \le x \le 360^\circ$

which satisfy the equation.

13. (a) Simplify $\frac{\sin 105^{\circ} - \sin(-15^{\circ})}{\cos 105^{\circ} + \cos(-15^{\circ})}$ giving your answer in the form $R\sqrt{3}$

(b) Given that $x = \tan \theta - \sin \theta$ and $y = \tan \theta + \sin \theta$. Prove that $(x^2 - y^2)^2 = 16xy$

(c) Prove that $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$, and $\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1-6\tan^2\theta + \tan^4\theta}$ and hence solve the equation

$$t^4 + 4t^3 - 6t^2 - 4t + 1 = 0$$

14. (a) Solve $5\sin(x+60^{\circ}) - 3\cos(x+30^{\circ}) = 4$ for $0^{\circ} \le \theta \le 2\pi$

(b) Find all the angles between 0^0 and 180^0 for $\frac{2}{\cos^2 2x} - 4 = 3\tan 2x$

(c) Find the angle B in the triangle ABC where $a = n^2 - 1$, $b = n^2 - n + 1$, and $c = n^2 - 2n$

VECTORS

15. (a) The point C(a, 4, 5) divides the line joining A(1, 2, 3) and B(6, 7, 8) in the ratio $\lambda : 3$. Find a and λ .

(b) Show that the lines $r = (-2i + 5j - 11k) + \lambda(3i + j + 3k)$, r = (8i + 9j) + t(4i + 2j + 5k) intersect, Hence;

(i) find the position vector of their point of intersection.

- (ii) Find also the Cartesian equation of the plane formed by these two lines.
- 16. (a) Determine the equation of the plane through the points A(1, 1, 2), B(2, -1, 3) and C(-1, 2, -2)

(b) A line through the point D(-13, 1, 2) and parallel to the vector $12\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$ meets the plane in (a) at point *E*. Find:

- i) the coordinates of E.
- ii) The angle between the line and the plane.

17. (a) The points A, B, C and D have coordinates (-7, 9), (3, 4), (1, 2) and (-2, -9) respectively. Find the vector equation of the line PQ where P divides AB in the ratio 2:3 and Q divides CD in the ratio 1:-4.

(b) The planes m and n are given by equations 3x + 2y + z = 4 and 2x + 3y + z = 5 respectively.

The plane π containing the point A(2, 2, 1) is perpendicular to each of the planes m and n. Find:

- (i) Distance from the point A to the plane m.
- (ii) Angle between the planes m and n.
- (iii) Cartesian equation of the plane.
- (iv) Equation of the line of intersection of the planes m and n.

GEOMETRY

18. (a) Find the equations to the lines through the point (2, 3) which makes angles of 45° with the line x - 2y = 1.

(b) A circle with centre P and radius r touches externally both the circles $x^2 + y^2 = 4$ and

 $x^{2} + y^{2} - 6x + 8 = 0$. Prove that the x - coordinate of P is $\frac{r}{3} + 2$.

- 19. (a) ABCD is a square; A is the point (0, -2) and C is the point (5, 1), AC being the diagonal. Find the equations of the lines AB and BC.
 (b) The line y = mx and the curve y = x² 2x intersect at the origin O and meet again at a point A. If P is the midpoint of OA, find the locus of P.
- 20. (a)(i) Find the equation of the tangent to the parabola y² = 4ax at point T(at², 2at).
 (ii) Determine the equations of the tangents to the parabola y² = 6x from the point (2, 4).
 (b)(i) If the tangents at points P and Q on the parabola y² = 4ax are perpendicular, find the locus of the mid-point of PQ.

(ii) The tangent to the parabola $y^2 = 4ax$ at point $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ intersect at R. Find the coordinates of R.

(c) A curve is given parametrically by $x = 3\left(\frac{1}{p^2} + \frac{2}{p} + 1\right)$ and $y = 6\left(\frac{1+p}{p}\right)$. Show that the curve is a parabola and find its focus.

21. (a)The line y = x - c touches the ellipse $9x^2 + 16y^2 = 144$. Find the value of *c* and the coordinates of the point of contact.

(b) Prove that the equation of the normal to the hyperbola $\frac{x^2}{a^2} \cdot \frac{y^2}{b^2} = 1$ at the point P (asec θ , btan θ) is $ax \sin \theta + by = (a^2 + b^2) \tan \theta$.

Compiled by MUGERWA FRED 0778081136/0700863565

(c) Show that the area of the triangle formed by any tangent to the hyperbola $\frac{x^2}{a^2} \cdot \frac{y^2}{b^2} = 1$ with its asymptote is A=ab square units.